On the relative equilibrium configuration in the planar six-body problem
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In a mathematical sense it means that for N-body problem exists a nonzero solution of the system (3 .5%under consideration of
INTRODUCTION the masses m.. In this case the number of bodies 1s even, but taking into account symmetry in model (0,4,2) we get that forall ¢, ¢’
detA”=0. Above condition is necessary for the existence central configuration of N-body problem, and in gartlcular
configuration of type (0,4,2). So a solution exists, independently on parameters g and g ". Write the vector equation (3.6) in more

Central configurations in the N-body problem are such configurations that the total Newtonian acceleration on each body is detailed form (a left four equations are identical, so we omit them), then:

equal to a constant multiplied by the position vector of this body with respect to the center of mass of the configuration (seee.g., { cppaatomy s (3.7)

[1]). 0.

We are interested in central configurations because they help to explain homographic solutions of the N-body problem. Central
configurations also appear as a key point when we study the topology of the set of points of the phase space having energy /4 and

angular momentum c. Moulton in 1910 characterized the number of collinear central configurations by showing that there exist

— oMy + aomeg

Where o1 = ——; and ap = -1~

: /@+q2. AL : :
Since, the vector' é?qﬁqatlon (3.6) 1s fulfilled 1f masses m,, m, and masses m,, m, are equal, we denote them (for fair the next
calculations) by u, and 1., respectively. Let w be the an ular velocity of the rotation around the Oz axis of the orthonormal frame

exactly N!/2 classes of central configurations of the N-body problem for a given set of positive masses (see e.g., [1]). The (Oxyz). The motion of Nbodies in the plane barycentric frame of references (Oxy) is governed by the differential equations:
number of classes of planar central configurations of the N-body problem for an arbitrary given set of positive masses has been . .

only solved for N = 3. In this case L.Euler has found a collinear relative equilibrium, and J.L.Lagrange has found central df_{g_ Ls Qw“f—?’# = wlr;— 3 my Bt (3.8)
configurations as two equilateral triangles (see [ 1 ] and the bibliography therein). : J=Li# ’

In the 90-1es B.Elmabsout [2] and E.A.Grebenicov [3] have proved that besides of the class of gravitational models in the d_“yr 2w = Wiy — Y mEgk,

inertial barycentric system (the so-called gravitational model of Lagrange-Wintner), there exists a new class of gravitational . i _ . j=1j#i "o . .

models, i.e., the class of gravitational models in non inertial frames (the so-called gravitational model of Grebenicov- Let (x,,,, 0) be coordinate of the material point i, inrotating frame of references Oxy. Then the following relations are true:
Elmabsout, we denote 1t by GE(m,;N)). They have proved that there exists a relative equilibrium configuration in the (N + 1)- pl 6 |

body problem with N bodies with equal masses located at the vertices of a regular N-gon, and with a body of non-zero mass Wi, = }_:_ - m, l—;L

situated in the center of the polygon. In 1991 B.Elmabsout has stated necessary and sufficient conditions for the existence of a { - ’ (3.9)
relative equilibrium configuration of the (N+1)-body problem for the Grebenicov-Elmabsout models when N material particles whiyy = 2 N

are located at the vertices of p regular n-gons centered at a given point-mass m,, with the bodies on the same n-gon having equal J=la% :

masses, and therefore N = p-n [4]. (We will denote this class of models by GE(m,; p, n)). In our paper we study the six-body foralli=1,...,6. We rewrite this system as

problem, where six bodies interact according to the Newtonian attraction. We deal with a central configuration of six point- T (z: | 1ws) (x5 | Lgyy)
masses (m, q,) (g, €R’,m. e R",i=1, ..., 6) located at the edges of a segment of length 2¢g with the rest four point-masses at the il N ? " " |
vertices of a square with the side ¢ /2. The segment is contained into a diagonal of the square and both have the same center of [t we note g=x;*iy, then we obtain |
symmetry with m =0. & 1 \i- g — gy (3.10)
During the last two decades in the N-body problem a series of papers on central configurations of type GE(m,; p, n) withp=1; 2; T @ " rg. ' '
3and n =2; 3; 4; 5 arose (E.A.Grebenicov, N.I.Zemtsova, A.Siluszyk, E.V.Ihsanov, D.Kozak-Skoworodkin). The problem of For the existence of the central configuration the following equalities are necessary holds
existence, finiteness and the evaluation of the number of central configurations in an asymmetric N-body problem for N=135;7 i = = (3.11)
has been stated by A.Siluszyk [5, 6]. where w, denotes the angular velocity of the material %Oint m, 1n the rotation of the orthonormal frame Oxy. Consider equation
(3.10) inmore detailed form, that1s for k=17,2 we will obtain 1 .
s 1 ~ @k — G k—q, k— ¢
DEFINITION AND MOTION'S EQUATIONS OF N BODIES P 3 By 3 T Y ——y), (3.12)
=17k 1k T Y i=3.j#k |qx — 4 i=5.3#k |qx — 4
We begin by defining central configurations of the Newtonian N-body problem in the plane. The N-body problem in _ : : .
celestial mechanics is concerned with the dynamics of N material points (m,, q,), (m,, @,), ..,(My, qy), meR’,i =1, ... N (the whereas for £=3,...,6 wewillhave
classical Newtonian problem), moving according to Newton's laws of motion [1]: 2 o 1 G2 6 bk
U 2.1) A (1 D> A ST ) T g 2 .
- s [ ¥ y W= e : 3 2 3 -' 3/
R e T gk | — 5] i=35#k |af — & i=55#k |qf — d (3.13)
where Uls the potential - From the equalities (3.12) and (3.13), by condition (3.11), we obtain the following system of equations
1<i<j<N 1B T 2l . (2.2) Yirlmn, jio, lis. 4.4 ) =0, 1 =1,2.3 (3.14)
Here the gravitational constant is taken equal to 1. The center of mass - ; miqi with m = my +may + ...+ my  the total mass Here, functions ¥ (m,,,11,,q,q’) have the form:
18 supposed to coincide with the origin of the inertial system. In this case the system is called the inertial barycentric system. By | oy = o= (a2 _i_ T 3 el ol ags (2 :;e I )H2t
a central configuration in a barycentric frame of reference of the N material points (m,, q,) we understand a configuration qeR S ISP y j o
that satisfies the equation [2] (Ye—ryd "~ a@-a) -~ Vags T G@e® T aaiaye Hs:
VU=oVl, 1<ish, (2.3) Vg = 4 ﬁT 1_ x};i:r'ql';:, N I:_q——lq"}”' * qt;ff.ifq—_;}r o q’tf;firf 3 )Mt
. . g Fe N e R . . . . 3 (— v2g'3 L |;ql'—|—q’3':% 2+ (315)
where o is a Lagrange multiplierand { = >_i—1 /4" neans the moment of inertia. Due to homogeneity of functions U and / one g V(a—a)? L @\ a—a)? f» _
h h ; L—g=F —na— T o p———. _l_—‘_f—rar.j_]f-!-,-!.
as that P - lq (a—q’) (g+q") Hqg—q") q(q+q")
27 - - ] (2.4) O - {_ "'n.,-';{‘f_‘?j-:'j L 1 4 2 41 9 v (g—q’ y _ e }-”?_.'_
I{JL _ —1{.-" a1 3 = (g—g" )*¥ (g+g" )= (2+q2)2 = T(e—a)* 9’ (g+q ) ‘
dq; 2 Jq; 1—2+/3 B~ +2/2
K g3 2 __573_—" H3-

In pther WOf%SS (&1 gt) can be rewritten as

which 1impli€ a central configuration represents a critical points of the function /U". Due to homO%enelt of this function The computations show that the determinant of the matrix of the system (3.14) is equal to zero. Using CAS Mathematica and
one has that if (m,,q,) 1s a central configuration then simultaneously ?mi,aq. and (m,,Rq,) are also central configuration for any Gauss' method we reduce the system (3.14) to the following one

real a#0 and R(2). We shall not distinguish them. A solution g=g(z) of the N material Points is called homographic in the
barycentric frame of reference if the configuration of the bodies remains similar to itself at all times ¢. By this we mean that Kim 4 Koo + kawa = 0 (3.16)
there exist a scalar r=r(?)>(0 and an orthogonal matrix 2.,(t) suchthatforeveryi=1,...,Nand¢ !l VP2 T R3H3 '
g;(t) = r(t) - Q(t) - q), (2.5) where the coefficients x,, x, , k, are given by (3.3).
where g’ denotes ¢, at some initial instant #=¢,. There are two limiting types of homographic solutions; first, when the . . : :
f i T dil I < h : : hO 0.(1)is the identi 5 P Such sol srap h hetic. The oth (<=) Let u,, 1, be known as (3.2) with the coefficients x, s=1,2,3 for (3.4) and m> 0. These values satisfy the system 53.16) which
configuration is dilating without rotation (i.e. when £,(?) is the identity matrix). Such solutions we call homothetic. The other in turn, is equivalent to (3.14). But recall that the .e%_uahtles in (3.15) mean pair-wise equalities in (3.12) and (3.13), which
appears, when the configuration 1s rotating without dilatation, (i.e. R(z)=1). This particular homographic solution is given by througfl (3.11) 1mplies that the equation (3.10) is satisfied. The last one 1s just the equation at central configuration.
x 0 : : :
, , o , g ={h(t) ¢ , , (2.6) Below we demonstrate some graphics for different values of parameters m and g. We can see that for given m and g the masses
and 1s called a relative equilibrium. In this case the system rotates around the center of mass with constant angular velocity 1, and L, are positive.
and constant mutual distances, when ¢ varies.
A GEOMETRICAL INTERPRETATION OF SIX-BODY MODEL Y
Now in the barycentric frame of reference we consider the planar motion of six interacting material points. :
We are concerned with the existence problems in two cases: namely (0; 2; 4) and (0; 4; 2). In the first case for 0 < g < gq’, we i
assume, that the "interior" two-points have equal masses, say m, whilst the "exterior" four bodies have the masses m,, m,, m, and ‘
m, enumerated clockwise. In the second case, for 0 < g, < g, we suggest that four bodies having the masses m,, m,, m, and m, are 5
"Interior", whereas the rest two-points with mass m are "exterior" . f
Let: r:R-A—RA=UA;.Ay={9eM: =g} andr,=| qﬁ-q. | be the distance between the i" and /" bodies. In our case forall my 5 mg
Jk=12andg=|0m|,q’=|0Om,, | =|Om,, | wehavethe following formulas expressing distances between the material points o j PR
( ‘ . wlk—3j) ..___|:| ______________________ ---- -,
ik = 2({ sin ;‘.:, - ‘ 5 | (31) m m
Tk, 24+5 — \.,ffq‘-) + q’? — 2qg q’' sin jrlfg_k" , !
y, Th dpg = '\'.—'fq? 4 q::} + 2g g’ cos ‘_?m_é_.t;]__ :
T24+j. 24k = 2¢ |sin W'J‘IE_J"’ ‘ i v
[ 724544k = 2q" |sin( jﬂﬁ'_“” —+ %]‘ L : ms
Moreovert, ., =T,..,.. Due the symmetrﬁ of the (0 2,4? and (0,4,2) we can get the invariance with respect to rotations in R°. The , P Figure 2. m.=0,1 g=1
following results were established by D.Bang and B.Elmabsout Figure 1. Configuration (0,4,2)

fheorem 3.1. [4] Let Il(n, m, q) and Il(n, m.",q’) be two concentric regular polygons with radii |q| and |q’| respectively.

Assume that all masses on the first polygon are equal to m, whereas the second polygon consists of the bodies with masses m’.

Thenll(n, m, q) and Il(n, m’, q’) form a relative equilibrium configuration if and only if they form a homothetic configuration

or if the internal polygon is similar to the external polygon with an angle equal to 7i/n. : ’

Theorem 3.2. [4] For given masses (m,,...m,) and a mass m_(the masses are fixed), there exists a central equilibrium
configuration where the masses are at the vertices of p..-homothetic n-gons centered around the mass m. Moreover, when n
vemfz%s n>a(n,a), it is possible to choose the order of the masses. In the case of a Newtonian potential (a=1/2), the last

inequality holds if and only if n<472.
Theorem 3.3. Given real numbers m>0 and 0<q'<q a central configuration of the type (0, 4, 2) exists if and only if the
masses m,, m, m, and m, satisfy the following two conditions:

0.1s |

(1) m,=m, and m,=m,
2 (= oty ‘“
(2) K1m+K2m3 +K3m4:O : R . Via—a)2  (g-q')(4¢% +34q"+4"%)
where the coeffici iq,q' - Wil _ W g e i P . = —= ,
fficients k,, k,, k, depend only on radii q, g o= B SN : (3.3)
and are defined by the formulas: .; W W e o
= R |
s = g+ o 1)
| 1 'q_:ﬂ;a_i &, l | o
k (Uq 7?3 V2R T@r T %{ (g3 T vy

We start by noting that for the N-body problem, equation (2.4) of the central configurations 1s a set of 3N algebraic equations . Figure 4 m.=0.01, g=1
with the general form: v Figure 3. m=0.5, g=1.5

] N I

z 1 3 LT i——= =0, i=1,...,N (3.4) References
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always has an order (2N). Moreover when Nis odd the determinant of the skew symmetric matrix always is equal zero.
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