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Knotting Problem

The classical Knotting Problem runs as follows: given an n-manifold

N and a number m, describe the set of isotopy classes of embeddings

N → Rm. For recent surveys see [Sk08, MA2]; whenever possible we

refer to these surveys not to original papers. We tacitly consider smooth

embeddings and isotopies unless piecewise linear (PL) embeddings and

isotopies are explicitly mentioned.

Figure 1: knotted torus in R3

The Knotting Problem is more accessible for 2m ≥ 3n + 4 [Sk08, §2,

§3, MA2]. It is much harder for

2m < 3n + 4 :

if N is a closed manifold that is not a disjoint union of homology spheres,

then until recently no complete readily calculable descriptions of isotopy

classes was known, in spite of the existence of interesting approaches of

Browder-Wall and Goodwillie-Weiss [Wa70, GW99]. 1

Recently there appeared two approaches allowing to classify embed-

dings for 2m < 3n + 4. One of them involves almost embeddings and β-

invariant [Sk06, CRS07, CRS08], another uses the Kreck modified surgery
1The approach of [GW99] gives a modern abstract proof of certain earlier known results. We are grateful to

M. Weiss for indicating that this approach also gives explicit results on higher homotopy groups of the space of
embeddings S1 → Rn.
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[Kr99, Sk08’, Sk10, CS11, CS]. Here we review applications of the latter

approach to classification of embeddings of 4-manifolds into R7.

For a manifold N let Em(N) (Em
PL(N)) be the set of smooth (PL)

embeddings N → Rm up to smooth (PL) isotopy.

Figure 2: connected sum group structure

Embedded connected sum

The ‘connected sum’ group structure on Em(Sn) was defined in [Ha66].

Haefliger proved that Em(Sn) = 0 for 2m ≥ 3n + 4 [Sk08, §3]. However,

Em(Sn) 6= 0 for many m,n such that 2m < 3n + 4, e.g. E7(S4) ∼= Z12.

Figure 3: embedded connected sum

In this paragraph assume that N is a closed n-manifold and m ≥ n+3.

The group Em(Sn) acts on the set Em(N) by connected summation of

embeddings g : Sn → Rm and f : N → Rm whose images are contained

in disjoint cubes. 2 Various authors have studied the analogous connected

sum action of the group of homotopy n-spheres on the set of smooth n-

manifolds homeomorphic to given manifold; see for example [Le70]. For

embeddings, the quotient of Em(N) modulo the above action of Em(Sn)

is known in some cases. Thus in these cases the knotting problem is
2Since m ≥ n + 3, the connected sum is well-defined, i.e. does not depend on the choice of an arc between gSn

and fN . If N is not connected, we assume that a component of N is chosen and we consider embedded connected
summation with this chosen component.
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reduced to the determination of the orbits of this action. This problem

is just as difficult as the Knotting Problem: until recently no results were

known on this action for m ≥ n + 3, Em(Sn) 6= 0 and N not a disjoint

union of spheres. For recent results see [Sk06, Sk08’, Sk10, CS11, CS]; for

a rational description see [CRS07, CRS08]; for m = n + 2 see [Vi73].

Embeddings of 4-manifolds into Rm

From now on N is a closed connected orientable 4-manifold. Since

each smooth n-manifold has the PL structure compatible with the given

smooth structure and each PL 4-manifold admits a unique smooth struc-

ture [Ma80, §1.2] we may consider N as simultaneously a smooth manifold

and a PL manifold.

Until recently a complete, readily calculable classification of embeddings

of N into Rm was only known for m ≥ 8 (Wu and Haefliger-Hirsch) or

for N = S4 and m = 7 (Haefliger):

#Em(N) = 1 for m ≥ 9, E8(N) = H1(N ;Z2), E7(S4) ∼= Z12.

It was also known that

• Em
PL(N) = Em(N) for m ≥ 8 and

• Em
PL(N) = H2(N) when N is simply-connected [BH70].

Here the equality sign between sets denotes the existence of a bijec-

tion; the isomorphism is a group isomorphism for the ‘connected sum’

group structure. See references and more information in [MA1]. For a

higher-dimensional analogue see [Ya84, Sk06, Sk10’]. For embeddings of

4-manifolds with boundary into R7 see [To10].

In this paper we classify embeddings into R7 for general closed con-

nected orientable torsion free 4-manifolds.

Main result for CP 2 and S2 × S2

Theorem 1. There are exactly two isotopy classes of embeddings

CP 2 → R7.

The two isotopy classes are represented by the standard embedding

and its composition with the symmetry w.r.t. R6 ⊂ R7. The standard

embedding is given by

(x : y : z) 7→ (xy, yz, zx, 2|x|2 + |y|2), where |x|2 + |y|2 + |z|2 = 1.
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Addendum. For each embeddings f : CP 2 → R7 and g : S4 → R7

embedding f#g is isotopic to f .

Theorem 2. For each integer u there are exactly GCD(u, 12) isotopy

classes of embeddings f : S2 × S2 → R7 with κ(f ) = (2u, 0), and the

same holds for those with κ(f ) = (0, 2u). Other values of Z2 are

not in the image of κ. (We take the standard basis in H2(S
2 × S2);

κ-invariant is defined below.)

Figure: construction of fu

Construction of an embedding fu with κ(f ) = (2u, 0). Take the

standard embeddings 2D5 × S2 ⊂ R7 (where 2 is multiplication by 2)

and ∂D3 ⊂ ∂D5. Take u copies (1 + 1
n)∂D5 × x (n = 1, . . . , u) of the

oriented 4-sphere outside D5×S2 ‘parallel’ to ∂D5×x. Join these spheres

by tubes so that the homotopy class of the resulting embedding

S4 → S7 − (D5 × S2) ' S7 − S2 ' S4 will be u ∈ π4(S
4) ∼= Z.

Let f be the connected sum of this embedding with the standard embed-

ding ∂D3 × S2 ⊂ R7.

Addendum. There are embeddings f0, f1 : S2 × S2 → R7 such

that for each embedding g : S4 → R7

• embedding f#g is isotopic to f .

• embedding f#g is isotopic to f if and only if g is isotopic to the

standard embedding.

4



Main result for S1 × S3

Theorem 3. There is a commutative diagram of surjections

Z12 × (Z× Z)

0×(id×ρ6)
²²

#×τ // E7(S1 × S3)

forg
²²

Z× Z6
τPL // E7

PL(S1 × S3)

such that

a#τ (l, b) = a′#τ (l′, b′) if and only if[
either l = l′ 6= 0, b ≡ b′mod 2l and a = a′,

or l = l′ = 0, b = b′ and a ≡ a′mod 2GCD(b, 6)
,

and τPL(l, b) = τPL(l′, b′) if and only if

l = l′ and b ≡ b′mod 2GCD(l, 3).

Here forg is the forgetful map, τ is defined below and τPL is well-

defined by τPL(l, b) := forg τ (l, ρ−1
6 b).

Figure 4: construction of τ

Definition of τ . [Sk02] Identify π3(V4,2) = π3(S
3)⊕ π3(S

2) = Z⊕Z
by the standard isomorphisms. Take a map ϕ : S3 → V4,2 representing

(l, b) ∈ Z⊕ Z. By the exponential law we obtain a map ϕ : S3 × S1 →
∂D4. Define the embedding τ (l, b) to be the composition

S1 × S3 ϕ×pr2→ ∂D4 × S3 ⊂ D4 × S3 ⊂ R7.

An alternative construction of τ (1, 0) and τ (0, 1). These two em-

beddings are defined as compositions S1×S3 pr2×ti→ S3×S3 ⊂ R7, where

i = 1, 2, pr2 is the projection onto the second factor, ⊂ is the standard

inclusion and maps ti : S1 × S3 → S3 are defined below. We shall see
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that ti|S1×y are embeddings for each y ∈ S3, hence τ (1, 0) and τ (0, 1) are

embeddings.

Define t1(s, y) := sy, where S3 is identified with the set of unit length

quaternions and S1 ⊂ S3 with the set of unit length complex numbers.

Define t2(eiθ, y) := H(y) cos θ + sin θ, where H : S3 → S2 is the

Hopf map and S2 is identified with the 2-sphere formed by unit length

quaternions of the form ai + bj + ck.

In Theorem 3 the commutativity holds by definition and the surjectivity

of forg is known [BH70]. The new and non-trivial part is the surjectivity

and the description of orbits of #× τ , as well as τPL being well-defined.

Theorem 3

• allows to disprove the Multiple Haefliger-Wu invariant conjecture, see

the end of §1.

• disproves the Melikhov informal conjecture: for each m ≥ n + 3

and a closed PL n-manifold N the set Em
PL(N) has a geometrically

defined group structure.

• shows that the parametric connected sum (see below) is well-defined

and defines a group structure on forg−1(τPL(0, 0));

• implies that the parametric connected sum (see below) is not well-

defined for embeddings S1 × S3 → R7, both in the PL and the smooth

cases.

Main results for the general case

In this paper we omit Z-coefficients from the notation of (co)homology

groups. We identify with Z the zero-dimensional homology group of a

connected manifold.

Denote

• Hk := Hk(N);

• by ρk the reduction modulo k.

• by # is the ‘connected sum’ action of E7(S4) identified with Z12 (by

the isomorphism η of [CS11]) on E7(N).
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Theorem 4. [Sk10], [CS11] Let N be a closed connected 4-manifold

such that H1 = 0. Then there is the Boéchat-Haefliger invariant

κ : E7(N) → H2 whose image is

{u ∈ H2 | ρ2u = PDw2(N), u ∩ u = σ(N)}.
For each u ∈ imκ there is a bijective invariant called the Kreck

invariant,

ηu : κ−1u → Zu.

Here

u :=

{
GCD(u/2, 12) if u is divisible by 2,

GCD(u, 3) otherwise
.

Denote

• by B(H3) the space of bilinear forms H3 ×H3 → Z;

• by l : H3 → H1, for l ∈ B(H3), a homomorphism defined by

l(x, y) = x ∩ l(y);

For an element u of a free abelian group denote by d(u) the divisibility

of u, i.e. d(0) = 0 and d(u) is the largest integer which divides u for

u 6= 0.

For an integer d let d be GCD(d/2, 12) or GCD(d, 3) according to d

divisible by 2 or not.

Theorem 5. Let N be a closed connected orientable 4-manifold with

torsion free H1.

(PL) There is a map

κPL × λPL : E7
PL(N) → H2 ⊕B(H3)

whose image consists of pairs (u, l) such that

ρ2u = PDw2(N) and l(y, x) = l(x, y)+u∩x∩y for each x, y ∈ H3.

For each (u, l) ∈ im(κPL × λPL) there is a 1–1 map

βu,l,PL : (κPL × λPL)−1(u, l) → H1

2l(H3) + GCD(d(u), 6)H1

.
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(DIFF) There is a map

κ × λ : E7(N) → H2 ×B(H3)

whose image consists of pairs (u, l) such that u2 = σ(N),

ρ2u = PDw2(N) and l(y, x) = l(x, y)+u∩x∩y for each x, y ∈ H3.

For each (u, l) ∈ im(κ × λ) there is a surjective map

βu,l : (κ × λ)−1(u, l) → H1

2l(H3) + d(u)H1

such that for each b ∈ im βu,l there is a 1–1 map

ηu,l,b : β−1
u,l (b) → Zδ(u,l,b),

where δ(u, l, b) is an unknown divisor of d(u).

(Addendum) Moreover, for each embeddings g : S4 → S7 and f :

N → S7

κ(f#g) = κ(f ), λ(f#g) = λ(f ), βf(f#g) = βf(f ) and

ηf(f#g) = ηf(f ) + ρδ(f)η(g), where βf := βκ(f),λ(f),

ηf = ηκ(f),λ(f),βf (f) and δ(f ) = δ(κ(f ), λ(f ), βf(f )).

Maps λ,κ, β and η are defined below.

Note that

• Theorem 3 does not follow from Theorem 5.

• for each u ∈ H2 the set λ(κ−1(u)) is in 1–1 correspondence with the

set of symmetric bilinear forms H3 ×H3 → Z.

The multiple Haefliger-Wu invariant conjecture.

Borsuk-Ulam type ideas in the theory of embeddings lead to discovery

of the Haefliger-Wu invariant. For a manifold N let

Ñ = {(x1, . . . , xp) ∈ N p | xi 6= xj for each i, j}.
The group Sp of permutations of p elements obviously acts on the space

Ñ . For an embedding f : N → Rm define the map

f̃ : Ñ → R̃m by f̃ (x1, . . . , xp) = (fx1, . . . , fxp).
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Clearly, the map f̃ is Sp-equivariant. Define the multiple Haefliger-Wu

invariant αp(f ) to be the Sp-equivariant homotopy class of f̃ .

We disprove the following conjecture that was ’in the air’ since 1960’s

(the authors learned it from A. N. Dranishnikov, E. V. Schepin, A. Szücs

and O. Ya. Viro).

If the multiple Haefliger-Wu invariants of two PL embeddings of a

connected PL n-manifold into Rm are equal and m ≥ n + 3, then the

embeddings are PL isotopic.

Figure 5: the double Haefliger-Wu invariant

For more introduction see [Sk06].

Theorem 6. For each p the multiple Haefliger-Wu invariant

αp : E7
PL(S1 × S3) → [S̃1 × S3

p → R̃7
p]eq is not injective, i.e. there

exists PL embeddings f, g : S1 × S3 → R7 which are not PL isotopic

but for which αp(f ) = αp(g).

We can take f = τ (0, 2) and g = τ (0, 0) the standard embedding.

By Theorem 3 f is not PL isotopic to g. The new β-invariant allowing

to distinguish embeddings these was constructed in frame of the Kreck

surgery approach to classification of embeddings. However, the main ideas

of proof could be clearly presented to non-specialists.

The non-manifold example of incompleteness of the Haefliger-Wu ob-

struction to embeddability (Segal, Spiez, Freedman, Krushkal, Teichner

and the author, 1990s) were cleverly used to obtain some algorithmic re-

sults on the existence of embeddings (Matoušek, Tancer, Wagner, 2008).

It would be interesting to know whether the new manifold counterexample

could be used to obtain algorithmic results on distinguishing embeddings.
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Main definitions and notation

We tacitly consider only compact manifolds.

Throughout this paper N is a closed connected orientable 4-manifold

with torsion free H1 and f : N → S7 is an embedding. Fix an orientation

on N and an orientation on S7. Denote by

• N0 := Cl(N −B4), where B4 is a closed 4-ball in N .

• C = Cf the closure of the complement in S7 ⊃ R7 to a tubular neigh-

borhood of f (N); the orientation on C is inherited from the orientation

of S7.

• ν = νf the normal vector bundle of f .

In this and other notation we sometimes omit subscript f .

Figure 6: main objects

Identify ∂C with the total space of the sphere bundle of ν. In this

paper a bundle isomorphism is always the restriction to the sphere bundle

of a linear bundle isomorphism identical on the base.

We denote Poincaré duality by PD. We denote the maps induced

in homology by the same letters as inducing maps (no confusion would

arise). The homology intersection products in N are denoted by ∩, and

intersection products in other spaces have subscripts indicating the space.

The well-known definitions of such products are recalled in [Sk10, Remark

2.3].

Let [N ] ∈ H4 be the fundamental class of N . For a manifold P denote

Hs(P, ∂) := Hs(P, ∂P ). For a map ξ : P → Q between a p-manifold and

a q-manifold denote the ‘preimage’ homomorphism by

ξ! := PD ◦ ξ∗ ◦ PD : Hs(Q, ∂) → Hp−q+s(P, ∂).
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For a q-manifold Q, a p-submanifold P ⊂ Q (possibly, with boundary

and possibly p = q) and either y ∈ Hs(Q) or y ∈ Hs(Q, ∂) denote

rQ,P (y) = rP (y) = y ∩ P := PD[(PDy)|P ] ∈ Hs(P, ∂).

If y is represented by a closed oriented submanifold Y ⊂ Q transverse

to P , then y ∩ P is represented by Y ∩ P . We use the same notation for

any coefficient group.

We denote by iP,X , jP,X , ∂P,X or shortly by iP , jP , ∂P the homomor-

phisms from the exact sequence of pair (P, X). If P = Cfk
or P = Cf ,

then we shorten the subscript Cfk
or Cf to just k or just f , respectively.

By e we denote any excision isomorphism.

Definitions of κ- and λ-invariants

Let ζ : N0 → ν−1N0 be a section of the normal bundle ν−1N0 → N0.

(This exists because the Euler class of ν is zero.) Consider the following

diagram.

H4(N0, ∂)
ζ // H4(ν

−1N0, ∂) H4(∂C, ν−1B4)e
oo H4(∂C)

j∂C

oo
iC // H4(C) .

Here j∂C is an isomorphism. Section ζ is called weakly unlinked if

iCj−1
∂Ce−1ζ = 0.

E.g. any section N0 → ν−1N0 is weakly unlinked for N = S1 × S3

because H4(S
7 − S1 × S3) ∼= H2(S

1 × S3) = 0.

A weakly unlinked section exists and is unique up to equivalence

over 2-skeleton of N (by [BH70, Proposition 1.3], cf. [Sk08’, the Un-

linked Section Lemma (a)], because by [Sk10, Remark 2.4 and footnote

14] our definition of a weakly unlinked section is equivalent to the original

definition [BH70]).

Definition of the Boéchat-Haefliger invariant κ : E7(N) →
H2. Represent a class x ∈ H2 by closed oriented 2-submanifolds (or

integer 2-chain) X ⊂ N0. Take a weakly unlinked section ξ : N0 → ∂C.

Since H2 has no torsion, κ(f ) is uniquely defined by

κ(f ) ∩ x := lk S7(fN, ξX).

This is well-defined, i.e., is independent of ξ, by [CS]. This definition is

equivalent to those of [BH70], [Sk10], [CS11] by [CS].
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Definition of Seifert form λ : E7(N) → B(H3). Represent

classes x, y ∈ H3 by closed oriented 3-submanifolds (or integer 3-chains)

X,Y ⊂ N0. Take a weakly unlinked section ξ : N0 → ∂C. Define

λ(f )(x, y) = lk S7(fX, ξY ) ∈ Z.

This is well-defined, i.e., is independent of ξ, by [CS] or else by [To10].

Clearly, λ(f ) : H3 ×H3 → Z is indeed a bilinear form.

Remarks. (a) If in definitions of κ and λ we take an arbitrary (i.e.

not weakly unlinked) section ξ, we obtain different values.

(b) Although a weakly unlinked section is defined over N0, its con-

struction essentially uses f not only f |N0. For embeddings N0 → S7

the Boéchat-Haefliger invariant does not exist and the definition of Seifert

form is more complicated, cf. [To10].

(c) Weakly unlinked sections may differ on 3-skeleton, and it seems

that change of ξ on 3-skeleton may change lkS7(fX, ξY ). The change is

however trivial. Formal explanation for this is given above. Informally,

the change is trivial because it is ‘factored’ through H3(S
2
f) = 0.

Figure 7: definition of κ- and λ-invariants

Lemma 7. (simplification) λ(f )(x, y) = lkS7(fX, fY ) if classes

x and y are represented by disjoint closed oriented 3-submanifolds

(or integer 3-chains) X and Y .

(κ-symmetry) λ(f )(y, x) = λ(f )(x, y)− κ(f ) ∩ x ∩ y.

By the simplification λ(f ) = lk(f |1×S3, f |{−1}×S3) for an embedding

f : S1 × S3 → R7. So the matrix of λτ (l, b) in the canonical basis is (l).

By definition it is clear that λ(f ) = κ(f ) = 0 when f (N) ⊂ R6.
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Conjecture 8. If f : N → R7 is an embedding such that f (N) ⊂ R6

and embeddings g1, g2 : S4 → R7 are not isotopic, then f#g1 and f#g2

are not isotopic.

This is only proved in [Sk10, The Effectiveness Theorem 1.2] when ΣN

retracts to Σ Cl(N −B4), e.g. N = S1×S3 or N spin simply-connected.

Definition of β-invariant

In this subsection f0, f1 ∈ (λ × κ)−1(l, u) and ϕ : ∂C0 → ∂C1 is an

orientation-preserving bundle isomorphism. In the sequel k = 0, 1; we

change subscripts ‘fk’ to ‘k’. Denote

M = Mϕ := C0 ∪ϕ (−C1).

Recall that a (stable tangent) string structure on a manifold is a stable

tangent framing on 3-skeleton (of some triangulation) extendable to 4-

skeleton, up to isotopy on 3-skeleton. Recall that a stable tangent spin

structure on a manifold is a stable tangent framing on 1-skeleton (of

some triangulation) extendable to 2-skeleton, up to isotopy on 1-skeleton.

A bundle isomorphism ϕ : ∂C0 → ∂C1 is called string if it carries the

string structure on ∂C0 coming from S7 to the string structure on ∂C1

coming from S7.

Lemma 9. A string bundle isomorphism exists and is unique (up to

equivalence) over N0.

Note that for this lemma we do not need that κ(f0) = κ(f1) and

λ(f0) = λ(f1).

Figure 8: definition of β-invariant

Take a small oriented disk D3
f ⊂ R7 whose intersection with fN con-

sists of exactly one point of sign +1 and such that ∂D3
f ⊂ ∂Cf . The
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meridian S2
f ∈ H2(Cf) of f is the homology class of ∂D3

f . By Alexander

duality S2
f generates H2(Cf).

A class Y ∈ H5(Mϕ;Zd) such that Y ∩ iMϕS
2
f0

= 1 is called a joint

(Zd-)homology Seifert surface (for ϕ).

Lemma 10. Let ϕ : ∂C0 → ∂C1 be a string bundle isomorphism.

(a) For each d ∈ Z there is a joint homology Seifert surface Y ∈
H5(Mϕ;Zd)

(b) For each joint homology Seifert surface Y ∈ H5(Mϕ;Zd) there

is a unique b ∈ H1(N ;Zd) such that iMϕν
!
f0

b = Y 2 ∈ H3(M ;Zd).

(c) (Well-definition for β)

β(f0, f1) := [(iMϕν
!
f0

)−1Y 2] ∈ H1

2l(H3) + d(u)H1

is independent of the choice of a string bundle isomorphism ϕ and a

joint Z-homology Seifert surface Y for ϕ.

(d) If β(f0, f1) = 0, then there is a joint homology Seifert surface

Y ∈ H5(Mϕ) such that Y 2 ∈ d(u)H3(Mϕ).

A class Y ∈ H5(Mϕ) as in Lemma 10.d is called a faithful class (for

ϕ).

Definition of η-invariant

Definition of η(f0, f1, Y ). Assume that β(f0, f1) = 0. Take a string

bundle isomorphism ϕ : ∂C0 → ∂C1. By Lemma 10.d there is a faithful

class Y ∈ H5(Mϕ). By the proof of [CS11], Null-bordism Lemma 2.6,

there is a compact connected spin 8-manifold W and z ∈ H6(W,∂) such

that ∂W =
spin

Mϕ and ∂z = Y . Denote d := d(u). Consider the following

exact sequence of pair (W,Mϕ):

H4(Mϕ;Zd)
iW→ H4(W ;Zd)

jW→ H4(W,Mϕ;Zd)
∂W→ H3(Mϕ;Zd).

Since

∂Wρdz
2 = ρdY

2 = 0, there is z2 ∈ H4(W ;Zd) such that jWz2 = ρdz
2.

Define

η(f0, f1, Y ) := ρd

z2 ∩ (z2 − pW )

2
.
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Proof that z2 ∩ (z2 − pW ) ∈ Zd is divisible by 2 for d even. The spin struc-

ture on W together with z ∈ H6(W,∂) ∼= H2(W ) ∼= [W,CP∞] define a

map W → B Spin×CP∞. By surgery of this map relative to the bound-

ary we may assume that it is 3-connected. The number z2 ∩ (z2 − pW )

does not change throughout this surgery because it is ‘B Spin×CP∞-

characteristic number’. Since the map is 3-connected, we have Tors H4(W ) ∼=
Tors H3(W ) = 0. Hence there is ẑ2 ∈ H4(W ) such that ρdẑ2 = z2. Then

z2 ∩ (z2 − pW ) = ρd(ẑ2 ∩ z2 − ẑ2 ∩ pW ) = ρd(ẑ2 ∩ ẑ2 − ẑ2 ∩ pW ).

The latter expression is divisible by 2 by [CS11, Lemma 2.11].

Figure 9: definition of η-invariant

Proof that η(f0, f1, Y ) is well-defined, i.e., is independent of the choice of ϕ,W, z and z2 as above.

The proof for z2,W, z is analogous to [CS11, 2.3]. For z2 instead of [CS11,

Lemma 2.7] we use that ∂WpW = pMϕ = 0. For W, z instead of the

uniqueness of ∂Wz of [CS11, Lemma 2.6] we use that ∂Wz = Y is fixed.

The proof for ϕ is analogous to [CS11, Framing Theorem 2.9.ϕ]. Instead

of H3 = 0 we use that ϕ is string not only spin.

Lemma 11 (Canonical embedding). For each (u, l) ∈ im(κ×λ) there is

an embedding fu,l ∈ (κ×λ)−1(u, l) such that η(fu,l, fu,l, Y ) = 0 ∈ Zd(u)

whenever Y is a faithful class for id ∂Cfu,l
.

Lemma 12 (Well-definition for η). Assume that f0, f1 ∈ (κ×λ)−1(u, l)

and β(f0, f1) = 0.

(a) The residue

η(f0, f1) := ρδ(u,l,β(f0,fu,l))η(f0, f1, Y ) ∈ Zδ(u,l,β(f0,fu,l))

is independent of a faithful class Y .

(b) If η(f0, f1) = 0, then there is a faithful class Y such that

η(f0, f1, Y ) = 0 ∈ Zd(u).
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Properties of the invariants

Lemma 13 (Transitivity). For each three embeddings f0, f1, f2 : N →
S7 having the same values of κ- and λ-invariants

β(f2, f0) = β(f2, f1) + β(f1, f0)

and, if β(f0, f1) = β(f1, f2) = 0, η(f2, f0) = η(f2, f1) + η(f1, f0).

Lemma 14 (Additivity). For each embeddings g : S4 → S7, f : N →
S7 and the standard embedding g0 : S4 → S7

κ(f#g) = κ(f ), λ(f#g) = λ(f ), β(f#g, f ) = 0 and

η(f#g, f ) = ρδ(f)η(g, g0).

Lemma 15 (Isotopy classification). If λ(f0) = λ(f1), κ(f0) = κ(f1),

β(f0, f1) = 0 and η(f0, f1) = 0, then f0 is isotopic to f1.

Figure 10: parametric connected sum

In our proof we use extensively parametric connected sum [Sk07], [MA],

in spite of its not being well-defined for embeddings of 4-manifolds into

R7.

Lemma 16 (Parametric additivity). For each p ∈ H1 and each em-

bedding h := f +p τ (l, b)

κ(h) = κ(f ), λ(h)(y, z) = λ(f )(y, z) + l(p ∩ y)(p ∩ z),

and, for l = 0, β(h, f ) = [bp].
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