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1. Introduction

An arithmetic convolution ring is a special case of the more general
convolution rings. Convolution rings were introduced in [7] as a general
ring construction for mainly two reasons:

(1) It provides a convenient tool to describe and investigate that
which is common for many different ring constructions.

(2) It enables one to isolate properties of the construction method
that determine algebraic properties of the constructed ring.

Both these will be demonstrated here by studying arithmetic rings
under the guise of arithmetic convolution rings. Recall, arithmetic
rings are rings of complex valued functions with domain in the set of
non-negative integers and multiplication typically given by the Cauchy
product or the Dirichlet product.

2. Definitions

An arithmetic convolution type T is a pair T = (X, σ) where the
parameters X and σ satisfy:

• X a non-empty set of integers and
• for every x ∈ X, ∅ ̸= σ(x) finite and symmetric subset of

X ×X.

For a ring A, let C(A, T ) = {f | f : X → A a function} with two
operations:

• componentwise addition, (f + g)(x) = f(x) + g(x) and
• convolution product, (fg)(x) =

∑
(s,t)∈σ(x) f(s)g(t)

For the product to be associative, it is assumed that:
For all x ∈ X, (s, t) ∈ σ(x) and (p, q) ∈ σ(s), there exists a unique

v ∈ X with (p, v) ∈ σ(x) and (q, t) ∈ σ(v).

C(A, T ) is a ring; called the arithmetic convolution ring of type T
over A; usually denoted by C(A).

In general there need not be any strong relationship between A and
C(A). To ensure that at least A can be embedded into C(A), suppose
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that X contains a non-empty subset T (the set of trivial elements)
which satisfies the following three conditions:

(T1) For all t ∈ T, (t, t) ∈ σ(t).
(T2) For every x ∈ X, there exists unique t = tx ∈ T such that

(t, x) ∈ σ(x).
(T3) If (p, q) ∈ σ(x) and p ∈ T , then q = x.

Then ι : A → C(A) defined by ι(a) = ιa : X → A with ιa(x) ={
a if x ∈ T
0 if x /∈ T

is an embedding of A into C(A).

3. Examples

(1) Direct Product. ∅ ̸= X ⊆ Z (Z the set of the integers). Let
σ(x) = {(x, x)} for all x ∈ X. Then T = X, (fg)(x) = f(x)g(x). C(A)
is the direct product AX of |X|-copies of the ring A.

(2) Cauchy Product. X = Z+
0 := {0, 1, 2, 3,... } and σ(n) =

{(i, j) | i, j ∈ Z+
0 , i + j = n} for each n ∈ Z+

0 . Then T = {0} and

(fg)(n) =
∑
i+j=n

f(i)g(j). C(A) is the ring A[[x]] of formal power series

over A in the commuting indeterminate x.

(3) Lucas Product. X = Z+
0 . Let p be any fixed prime. Then

any integer a ≥ 0 can be written as a = a0 + a1p+ a2p
2 + ... where for

each ai, 0 ≤ ai < p. Let σ(n) = {(r, s) | r, s ∈ Z+
0 , r + s = n and for all

i ≥ 0, ri ≤ ni} for each n ∈ Z+
0 . Then T = {0}.

(4) Dirichlet Product. X = Z+ and for each n ∈ X, let σ(n) =

{(r, s) | r, s ∈ Z+, rs = n}. Then T = {1} and (fg)(n) =
∑
d|n

f(d)g(n
d
).

(5) Extended Dirichlet Product. X = Z − {0} and for every
n ∈ X, let σ(n) = {(r, s) | rs = n}. Then T = {1} and σ(1) =
{(1, 1), (−1,−1)}.

(6) Prime Power Product. Let p1, p2, ..., pk be k distinct primes,
k ≥ 1. Let X = {pn1

1 pn2
2 ...pnk

k | ni ≥ 0}. For each n ∈ X, let σ(n) =
{(r, s) | r, s ∈ X, rs = n} and let T = {1}.

(7) Unitary Convolution. Let X = Z+ and for each n ∈ X, let
σ(n) = {(r, s) | r, s ∈ Z+, rs = n and gcd(r, s) = 1}. Then T = {1}.

(8) Necklace Product. Let X = Z+ and let σ(n) = {(i, j) |
i, j ∈ Z+, lcm(i, j) = n} for all n ∈ Z+. Then T = {1} and (fg)(n) =∑
lcm(r,s)=n

f(r)g(s).
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(9) Quasi-regular Product. Let X = Z+
0 and let σ(n) = {(i, j) |

0 ≤ i, j ≤ n, i+ j − ij = n} for each n ≥ 0. Then T = {0}.

(10) Full product. Let X = Z+ and let σ(n) = {(i, j) | (i = n
and 1 ≤ j ≤ n) or (j = n and 1 ≤ i ≤ n)} for all n ≥ 1. Then T = {1}.

4. Zero-divisors

Any zero-divisor of A will be a zero-divisor of C(A), but zero-
divisors in C(A) may also exclusively come from properties of the con-
volution parameters:

Proposition 1. Suppose the convolution type T satisfies condition
(ZD1) : There exists p, q ∈ X such that for all x ∈ X, (p, q) /∈

σ(x).
Then C(A) will have nonzero zero-divisors for any ring A ̸= 0.

Proposition 2. Suppose the convolution type T satisfies condition
(ZD2) : There exists p ∈ X − T such that (p, p) ∈ σ(p) and

for all x ∈ X − {p}, (p, p) /∈ σ(x).
Then C(A) will have nonzero zero-divisors for any ring A ̸= 0.

An arithmetic convolution type is called well-behaved if it satisfies:
(WB1) For every r, s ∈ X, there exists y ∈ X with (r, s) ∈

σ(y).
(WB2) T has the Complementary Ordering Property, i.e., for

all x ∈ X and for all (r, s), (u, v) ∈ σ(x), r ≤ u ⇔ s ≥ v.
(WB3) T fulfils the Lower Bound Requirement : If T ̸= X, then

X − T has a lower bound in Z.

Proposition 3. Let T be a well-behaved arithmetic convolution
type. Then C(A) will have zero-divisors if and only if the ring A has
zero-divisors. Thus, for such convolution types, C(A) is an integral
domain if and only if A is an integral domain.

Examples of well-behaved arithmetic convolution types are: the
Cauchy product, the Dirichlet product and the prime power product.

5. Units and Inversion Theorems

Any unit in A will be a unit in C(A), but in general C(A) is much
larger than A and may contain more units. To help identifying units in
C(A), a convolution type is said to satisfy condition (U) if the following
three requirements are fulfilled:

(U1) For all t ∈ T, σ(t) = {(t, t)}.
(U2) For all x ∈ X and for all (r, s) ∈ σ(x), if r /∈ T, then

s < x.
(U3) Lower Bound Requirement, i.e. if T ̸= X, then X − T

has a lower bound in Z.
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Proposition 4. For an arithmetical convolution type which satis-
fies condition (U) and a commutative ring A with identity, f ∈ C(A)
is a unit in C(A) if and only if f(t) is a unit in A for all t ∈ T.

A simple observation but with many applications is the Inversion
Principle. This is especially the case for the Dirichlet product where it
forms the basis of the well-known inversion theorems:

Inversion Principle. Let A be a commutative ring with identity.
Let u ∈ C(A) be a unit with inverse w. For any f, g ∈ C(A), f = gu if

and only if g = fw. Hence, for each x ∈ X, f(x) =
∑

(r,s)∈σ(x)

g(r)u(s) if

and only if for each x ∈ X, g(x) =
∑

(r,s)∈σ(x)

f(r)w(s).

Examples:
(1) The direct product convolution type satisfies condition (U)

and f : X → A is a unit if and only if f(x) is a unit for all x ∈
X. Inversion theorems are not interesting here: the product is not
”convoluted” enough: if u is a unit in AX with inverse u−1, then for any
f, g ∈ AX , f(x) = g(x)u(x) for all x if and only if g(x) = f(x)u−1(x) =
f(x)(u(x))−1 for all x.

(2) The Dirichlet product convolution type satisfies condition
(U) and if u ∈ C(A) is a unit with inverse w, then for all f, g ∈ C(A),

f(n) =
∑
d|n

g(d)u(n
d
) for all n ≥ 1 if and only if g(n) =

∑
d|n

f(d)w(n
d
) for

all n ≥ 1. In particular, if we take X = Z+, A = C and u(n) = 1 for
all n ≥ 1, then u is a unit with inverse

w(n) =

 1 if n = 1
(−1)k if n has k different primes in its prime factorization
0 otherwise

.

This is just the Möbius function and we have the well-known Möbius

Inversion Formula: f(n) =
∑
d|n

g(d) for all n ≥ 1 if and only if g(n) =∑
d|n

f(d)w(n
d
) for all n ≥ 1.

(3) TheCauchy product convolution types satisfies condition (U).
An application of the Inversion Principle for the Cauchy product is: Let
A = C and let k ̸= 0 be a fixed real number.

Let u := (1+x)k =
+∞∑
n=0

(
k
n

)
xn where

(
k
n

)
=

{
k(k−1)...(k−(n−1))

n!
if n ≥ 1

1 if n = 0
,

i.e.
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u(n) =
(
k
n

)
for all n ≥ 0. Then u is a unit in C(A) with inverse

w = (1 + x)−k =
+∞∑
n=0

(−k
n

)
xn, i.e. w(n) =

(−k
n

)
for all n ≥ 0. Let

g(n) = 1 for all n ≥ 0. For f = gu we get f(n) =
n∑

i=0

(
k

n−i

)
and

then g = fw by the Inversion Principle which leads to the identity

1 =
n∑

i=0

i∑
j=0

(
k

i−j

)(−k
n−i

)
for all n ≥ 0.

(4) Any well-behaved arithmetic convolution type satisfies condition
(U).

6. Well-behaved arithmetic convolution types

Proposition 5. Let T = (X, σ) be a well-behaved arithmetic con-
volution type. Then:

(i) T = {t}.
(ii) For any x, y ∈ X, there exists a unique z ∈ X with (x, y) ∈ σ(z);

write z = x ∗ y
(iii) (X, ∗) is a commutative semigroup with identity t.
(iv) The identity t is the only unit in the semigroup (X, ∗).
(v) (X, ∗) is cancellative (a ∗ x = a ∗ y implies x = y)
(vi) (X, ∗) is torsion-free (nx = ny implies x = y, n ≥ 1).
(vii) (X, ∗) is monotone with respect to the usual order on Z (for

all x, y, a ∈ X, x < y implies x ∗ a < y ∗ a).
(viii) When T ̸= X, then X must necessarily be infinite.

In general, for T a well-behaved arithmetic convolution type, C(A, T )
is not the same as the semigroup ring A[X] since the latter only con-
sists of functions with finite support. The generalized power series
rings studied by Ribenboim in many papers, see for example [3], is
more restrictive than the general arithmetic convolution rings while a
well-behaved arithmetic convolution ring is a special case of a general-
ized power series ring but with much sharper results.

7. Factorization

Discussions about factorization usually start with the notions prime
and irreducibility; here it is no exception.

Suppose that T = (X, σ) is a well-behaved arithmetic convolution
type with T = {t}. We fix some terminology:

• For x, y ∈ X, x σ-divides y in X if there is a z ∈ X with
y = x ∗ z.

• p ∈ X is σ-irreducible if p /∈ T and |σ(p)| = 2, i.e. σ(p) =
{(p, t), (t, p)}.
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• p ∈ X is σ-prime if p /∈ T and whenever p σ-divides a ∗ b,
then p σ-divides a or p σ-divides b.

• For m ∈ X, define em : X → A by em(x) =

{
1 if x = m
0 otherwise

.

Proposition 6. Let T = (X, σ) be a well-behaved arithmetic con-
volution type and let A be an integral domain. If p ∈ X is σ-prime,
then ep is a prime element of the ring C(A).

Proposition 7. Let T be a well-behaved arithmetic convolution
type and let A be an integral domain. Let b ∈ A. Then:

(i) If b is irreducible in A, then b is also irreducible in C(A).
(ii) If b is prime in A, then b is also a prime element in C(A).
(iii) If f ∈ C(A) with f(t) irreducible in A, then f is irreducible in

C(A).

Proposition 8. Let T be a well-behaved arithmetic convolution
type and let A be an integral domain. Let f ∈ C(A) with f(t) = ab
where a and b are non-units in A with aA+bA = A. Then f is reducible
in C(A).

Proposition 9. Let T be a well-behaved arithmetic convolution
type and let A be an integral domain. If A has acc on principal ideals,
then so does C(A).

Let E := {ep | p ∈ X is σ-prime}. If E ̸= ∅, let A[[E]] denote the
ring of formal power series over A in the commuting indeterminates
ep ∈ E.

Proposition 10. Let T be a well-behaved arithmetic convolution
type and let A be an integral domain. Suppose every σ-irreducible el-
ement in X is σ-prime and X has at least one σ-irreducible element.
Then C(A) ∼= A[[E]].

Examples:
(1) The Cauchy Product has only one σ-prime (namely 1) and

C(A) ∼= A[[x]].

(2) The Dirichlet Product has infinitely many σ-primes (the prime
numbers are exactly the σ-primes) and C(A) ∼= A[[x1, x2, x3, ...]].

(3) For the Prime Power Product determined by the primes p1, p2, p3, ..., pk,
these are exactly also all the σ-primes and C(A) ∼= A[[x1, x2, x3, ..., xk]].

Proposition 11. For a well-behaved arithmetic convolution type
T with cardinality of the index set at least 2 and an integral domain A,
the following are equivalent:

(i) C(A) is a principal ideal domain.
(ii) A is a field and X has a unique σ-irreducible element.
(iii) A is a field and C(A) ∼= A[[x]].
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For our final results, we need : Choose p ∈ X, let Xp := {x ∈ X | p
does not σ-divide x} and σp(r) = σ(r) for all r ∈ Xp. Then:

Proposition 12. For a well-behaved arithmetic convolution type
T = (X, σ) and Tp := (Xp, σp), Tp is a well-behaved arithmetic convo-
lution type if and only if p is a σ-prime element of X.

In this case, for a ring A, the corresponding convolution ring is
denoted by Cp(A). The function πp : C(A) → Cp(A), defined by

πp(f) = f where f is the restriction of f to Xp, is a surjective ho-
momorphism with ker πp the ideal of C(A) generated by ep. With any
g ∈ Cp(A) we associate an element g∗ : X → A of C(A) defined by

g∗(x) =

{
g(x) if x ∈ Xp

0 otherwise
. Then πp(g

∗) = g∗ = g and πp(f) = πp(f
∗
)

for all g ∈ Cp(A), f ∈ C(A).

Proposition 13. Let T be a well-behaved arithmetic convolution
type. Let p ∈ X be a σ-prime element and let I be a prime ideal of
C(A). Then Ip := πp(I) is an ideal of Cp(A). Moreover, I is finitely
generated in C(A) if and only if Ip is finitely generated in Cp(A). In

particular, if I = ⟨f1, f2, ..., fn⟩, then Ip =
⟨
f1, f2, ..., fn

⟩
and if Ip =

⟨g1, g2, ..., gn⟩ , then

I =

{
⟨g∗1, g∗2, ..., g∗n, ep⟩ if ep ∈ I
⟨f1, f2, ..., fn⟩ if ep /∈ I and fi ∈ I with πp(fi) = gi.

For the Cauchy Product, there is a unique σ-prime and C(A) ∼=
A[[x]]. The above theorem is then just the well-known result of Ka-
plansky that a prime ideal I of A[[x]] is finitely generated if and only
if I1 := {a ∈ A | a = f(0) for some f ∈ I} is a finitely generated ideal
of A.

Corollary 14. (Arithmetic convolution ring version of the Hilbert
Basis Theorem) Let T be a well-behaved arithmetic convolution type.
Let p ∈ X be a σ-prime element. For an integral domain A, Cp(A)
noetherian implies C(A) noetherian.

Corollary 15. Let T be a well-behaved arithmetic convolution
type. Let p ∈ X be a σ-prime element. If Cp(A) is a principal ideal
domain, then C(A) is a unique factorization domain.

For polynomial rings, the converse of the Hilbert Basis Theorem
was given by Gilmer [2]; we conclude with the arithmetic convolution
ring version.

Proposition 16. Let T be a well-behaved arithmetic convolution
type with cardinality of the index set greater than one. Let A be a
commutative ring. Then C(A) noetherian implies A noetherian and A
must have an identity.
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